All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave.
نویسندگان
چکیده
High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing.
منابع مشابه
Attosecond timing jitter modelocked lasers and ultralow phase noise photonic microwave oscillators
Photonic microwave oscillator based on optical frequency comb and ultrastable optical reference cavity represents the state-of-the-art solution to generate X-band microwaves of ultralow phase noise. Such high-quality microwave source enables a range of applications in which frequency stability and timing accuracy are essential to performance. Wide use of this technology, however, requires compa...
متن کاملOptical flywheels with attosecond jitter
It has been known for some time that the steady-state pulse propagating inside a mode-locked laser is the optical equivalent of a mechanical flywheel. By measuring the timing error spectrum between phase-locked optical pulse trains emitted from two nearly identical 10 fs Ti:sapphire lasers, we demonstrate a record low integrated timing error of less than 13 as, measured from d.c. to the Nyquist...
متن کاملGeneration of ultrastable microwaves via optical frequency division
There has been increased interest in the use and manipulation of optical fields to address the challenging problems that have traditionally been approached with microwave electronics. Some examples that benefit from the low transmission loss, agile modulation and large bandwidths accessible with coherent optical systems include signal distribution, arbitrary waveform generation and novel imagin...
متن کاملPhotonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution.
Conversion of analog signals into digital signals is one of the most important functionalities in modern signal processing systems. As the signal frequency increases beyond 10 GHz, the timing jitter from electronic clocks, currently limited at approximately 100 fs, compromises the achievable resolution of analog-to-digital converters (ADCs). Owing to their ultralow timing jitter, the use of opt...
متن کاملFew-mode fibre-optic microwave photonic links
The fibre-optic microwave photonic link has become one of the basic building blocks for microwave photonics. Increasing the optical power at the receiver is the best way to improve all link performance metrics including gain, noise figure and dynamic range. Even though lasers can produce and photodetectors can receive optical powers on the order of a Watt or more, the power-handling capability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific reports
دوره 5 شماره
صفحات -
تاریخ انتشار 2015